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Understanding processes occurring in the different life stages of jellyfish is key to advance knowledge on their
trophic interactions and population dynamics. We describe four developmental stages of Felagia noctiluca ephyrae
and metaephyrae based on the progress of feeding structures and morphometric measurements on the central disc
diameter and total body diameter. Size differs significantly among stages, but it can overlap substantially, suggesting
that it is not always coupled with development progress due to different somatic growth. Morphological distinction
of stages is biologically important because it implies different levels of food specialization and capture efficiency. We
further report a 25% (£13 SD) shrinkage of ephyrae and metaephyrae after storage in 4% formaldehyde solution.
This metric can be used in ecological studies focusing on size-related traits of field observed individuals.
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INTRODUCTION

Increasing observations of jellyfish blooms in coastal areas
have risen awareness that human activities can influ-
ence jellyfish population dynamics (Purcell et al., 2007
Richardson et al., 2009). However, linking global change
to changes in jellyfish population remains controversial
(Duarte et al., 2015; Pitt et al., 2018) as they remain poorly
studied compared with other marine taxa (Gibbons e/ al.,
2013). To better understand how jellyfish populations
respond to environmental changes, further knowledge in
the biology and ecology of all their life stages is necessary.
Particularly during the pelagic early life stages, as most
studies focus on adult and polyp stages.

Pelagia noctiluca is a scyphozoan jellyfish of warm-
temperate waters that thrives particularly well in the
Mediterranean Sea (Licandro ez al., 2010; Canepa et al.,
2014), where recurrent blooms have caused damage to
fisheries, aquaculture and tourist activities (Purcell ez al.,
2007; Boero, 2013). As opposed to most other jellyfishes,
P noctiluca 1s a holoplanktonic species that completes its
lifecycle in pelagic waters, skipping the benthic polyp
stage (Krohn, 1856).

Pelagia noctiluca can only reproduce sexually—adult
males and females gather near the surface to release their
gametes and favor egg fertilization (Rottini Sandrini ez al.,
1983; Zavodnik, 1987; Canepa et al., 2014). Fertilized
eggs develop into planula larvae that metamorphose
to ephyrae stage within 2—7 days depending on water
temperature (Avian, 1986; Rosa et al., 2013). Ephyrae
have a compressed shape with oral lips, rhopalia (sense
organs) and eight marginal lobes that bifurcate forming
lappets. Metaephyra is the subsequent stage after ephyra.
In the transition from ephyrae to metaephyrae they
increase the proportional size of the central disc and
develop tentacles and the digestive and oral systems
to feed more efficiently (Strachler-Pohl ez al., 2010;
Kamiyama, 2018; Kienberger et al., 2018; Ishii et al.,
2004). The juvenile stage is achieved when oral arms and
marginal tentacles are well established (Russell, 1970;
Ramondenc ez al., 2019).

Rottini Sandrini and Avian (1983) described nine
stages of ontogenetic development from planula larvae to
ephyrae of P noctiluca. However, no further ontogenetic
stages have been described from ephyrae to metaephyrae.
This period is critical in their life cycle, as they start
relying heavily on external sources of food for growth and
survival (Lilley et al., 2014; Kamiyama, 2018; Ramondenc
et al., 2019). Their capacity to capture prey increases with
size and development stage, and prey items range from
phytoplankton and ciliates in early ephyrae (Bamstedt
et al., 2001; Miranda et al., 2016; Kamiyama, 2018), to
micro- and mesozooplankton (including ichthyoplankton)
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as they grow larger (Purcell e/ al., 2007; Gordoa et al.,
2013; Ramondenc ez al., 2019).

Only recently have scientists started to realize how
important P noctiluca ephyrae and metaephyrae are as
predators of fish eggs and larvae. Purcell et al. (2014 esti-
mated that they can consume up to 13.4% of the available
fish larvae per day in the front zone of a shelf slope; Tilves
etal. (2016) estimated that they can consume 1.5-2.7% of
the ichthyoplankton community per hour and Ottmann
et al. (2021) estimated that occasional high densities of
metaephyrae (>10 metaephyrae m™) can reduce survival
chances of tuna early life stages by 99% in specific loca-
tions. Considering their voracious killing potential and
the ontogenetic changes of prey items during this period,
differentiating finer stages of development from ephyrae
and metaephyrae can facilitate further studies of trophic
ecology.

Outbreaks of P noctiluca in the Mediterranean Sea
appear to have increased in recent decades (Kogovsek
et al., 2010; Bernard et al, 2011), but how it relates
to climate change remains uncertain (Daly Yahia et al.,
2010). Increasing evidence points that mild winters and
productive springs favor reproductive activity and survival
of early life stages (Malej ez al., 2004; Milisenda et al., 2018;
Ottmann e al., 2021). However, we still struggle to under-
stand how climate change affects early survival during the
summer months, as warm water and low food supply may
drive ephyrae and metaephyrae to starve. Thus, further
deterministic studies are necessary to link climate varia-
tion with stage-specific survival and population dynamics.
Classifying early life stages based on ecological traits can
facilitate studies linking climate change to early survival
and population outbreaks.

Here we describe four developmental stages of ephyrae
and metaephyrae and assess size-at-stage based on mor-
phometric measurements. Our goal is to set a stage classi-
fication that is useful for further ecological studies. We also
estimate size shrinkage of specimens stored in formalde-
hyde solution—a widespread procedure used to preserve
plankton samples.

METHODS
Field sampling

We used ephyrae and metaephyrae from plankton
samples collected with bongo nets during daytime in
four annual surveys around the Balearic Islands, western
Mediterranean Sea, between June 21 and July 9. The
nets (90-cm diameter and 500-um mesh size) were
towed obliquely down to 30-m depth for 8-12 minutes
at 2 knots cruising speed. For the morphological and
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morphometrical description, we preserved the plankton
samples directly in 4% formaldehyde solution buffered
with borax for further processing in the lab (14 stations
in 2014, 13 stations in 2015 and 12 stations in 2016). For
the shrinkage experiment, we sorted and photographed
108 live individuals immediately after sampling in 2019.
Images were taken under a dissecting microscope with
a camera attached, and specimens were preserved in
individual vials for further processing in the lab. They
were selected to cover different sizes and morphologies.

Laboratory processing

We sorted 2576 individuals (n =892 from 2014), (n =624
from 2015) and (z=1 060 from 2016) under a dissecting
microscope with a camera attached and classified them in
four stages upon the level of development of their body
shape, gastric system (digestive chamber and filaments),
oral system (manubrium and oral arms), marginal system
(marginal lobes, lappets, and tentacles) and nematocysts
(Fig. 1). We then photographed each individual and mea-
sured the central disc diameter (CDD; Strachler-Pohl and
Jarms, 2010) to the nearest 0.01 mm with Image] anal-
ysis program (Schneider et al., 2012). For the shrinkage
experiment, we measured the CDD (Strachler-Pohl e al.,
2010) on live individuals and repeated the measurements
6 months after preservation in formaldehyde using Image
J. Previous research has shown that gelatinous plankton
stored in 4% formaldehyde solution typically stops shrink-
ing 1-3 months after preservation (Thibault-Botha ez al.,
2004; Lafontaine et al., 1989; Moller, 1980). A subset of 46
live individuals with good conditions (without broken or
bended lappets and marginal lobes) was used to measure
total body diameter (TBD; Strachler-Pohl ez al., 2010).
TBD was not measured in preserved individuals due to
the poor condition of most samples (e.g. Fig. S1).

Data analysis

Size at a given stage can vary upon temperature and food
availability affecting growth (Avian, 1986; Kamiyama,
2018). Because these variables differ among years (e.g.
Ottmann ¢t al., 2021), annual differences in size-at-stage
should be considered in this analysis. Thus, we apply
a two-way analysis of variance on CDD measurements
of each individual ¢ considering development stage and
sampling year,

CDD; = Po+ B1(Stage;) + Bo(Year;)
+Bs3(Stage; x Year; +¢&;  (Model 1)

Nematocysts Lappets

Sealle /\ Primary
5 B 7marginallobes

Secondary

marginal lobes —§ B Gastric

filaments

Manubrium

Fig. 1. Morphological structures of a P noctiluca ephyrae.

where By is the intercept, B; 3 are the parameter slopes
and ¢; is the model error. Model diagnostics indicate the
data are heterogeneous (residuals are greater at greater
stages of development). However, repeating the analysis
using log-transformed values of CDD does not violate
any statistical assumption and yields similar values of
significance as with the original data. Thus, we include
the model diagnostics of both tests in the supplementary
materials and report the results of the untransformed
measurements below. CDD measurements from 2019
were not included in this analysis because the sample size
was 6—10 times smaller than in 2014-2016.
Shrinkage is calculated as

Live CDD — Preserved CDD
Live CDD

Shrinkage =

and we apply a linear regression to test if shrinkage differs
across different CDD sizes.

Shrinkage; = Bo + P1 (live CDD;) + ¢; (Model 2)

Model diagnostics are shown in the supplementary
materials and all test results are considered statistically
significant at a P-value < 0.05. The data and R code are
available on https://github.com/dottmann/pelagia_e
phyrae_stage_determination.

RESULTS

Morphological stages of development

We differentiate four stages of development from newly
developed ephyra (stage I) to fully developed metaephyrae

(stage IV).

727

1202 1840100 0z U Jasn uabiag | 1o3S10AIASIONSISAIUN AG ZEG09E9/GZ./G/E bioIo1 e/ UBId/W0D dno"olwapeoe)/:sdRy WO POPEOJUMOQ


https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/fbab060#supplementary-data
https://github.com/dottmann/pelagia_ephyrae_stage_determination
https://github.com/dottmann/pelagia_ephyrae_stage_determination

JOURNAL OF PLANKTON RESEARCH

Fig. 2. Oral view of four development stages of ephyrae and metae-
phyrae. (a) Stage I, (b) stage II, (c) stage 111, (d) stage IV. GF = gastric fil-
ament; LP =lappet; M = manubrium; NM = nematocyst; PL = primary
lobe; PT = primary tentacle; RC = rhopalial canal; SL = secondary lobe;
ST =secondary tentacle; TB = tentacle bud. Some tentacles in (c) and
(d) are retracted.

Stage I-—Planula larvae develop into ephyrae when
the bell has flattened, and the manubrium has a clear
cross-shape attached to the central cavity (Iig. 2a). They
have eight primary (first to appear) marginal lobes, each
with a pair of pointed spoon-like marginal lappets and a
single rhopalium (sensory structure) at the extreme of a
rhopaliar canal that ends in a slightly forked and rounded
tip. The gastric system has a central stomach with four
gastric chambers that are difficult to see. Some specimens
have developed one to three gastric filaments.

Stage II—The bell is still flat, eight secondary marginal
lobes (appear after the primary ones) are developing
and tentacle buds are apparent (Fig. 2b). All four gastric
filaments, one per chamber, are fully formed and the
manubrium is thickening. Nematocysts start to appear on
the aboral part of the ephyrae.

Stage III—Ephyra has transitioned to metaephyrae.
Mesoglea in the umbrella starts to thicken, and four
primary tentacles have emerged between the lappets of
primary lobes (Fig. 2¢). Secondary marginal lobes have
grown substantially, but they are still shorter than the pri-
mary lobes. Four tentacle buds have appeared in alternate
positions regarding the primary tentacles. Each gastric
chamber has up to three filaments and the manubrium
has elongated. More nematocysts have appeared in the
aboral side, covering the bell.

Stage IV—Mesoglea keeps thickening in the umbrella,
primary tentacles are well developed and the sec-
ondary tentacles have appeared (I'ig. 2d). The secondary
marginal arms are getting close to overlap with the
primary ones, and the space between lappets (lappet
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stem) has almost disappeared. More gastric filaments
appear in each chamber, and the manubrium continues
to elongate and starts to differentiate primordial oral
arms. The juvenile stage is achieved when the marginal
lobes are equally long, the lappets of the primary and
secondary lobes overlap, the lappet stem disappears and
the oral arms are formed. The shape of the juvenile stage
resembles the typical umbrella shape of adults.

Stage morphometry

CDD and TBD of live specimens range 0.53-5.85 mm
and 1.29-6.92 mm, respectively, with increasing CDD:
TBD ratio with size (Table I). On average, CDD of
ephyrae and metaephyrae shrinks 24.6% (£12.8 SD)
after 6 months preserved in formaldehyde (Fig. 3a),
and shrinkage is the same across different sizes (F-test,
P =0.16). CDD of individuals preserved in formaldehyde
ranges 0.43-4.43 mm and differs significantly across
stages (Fig. 3b; F-test, P <0.05). For each stage CDD
varies among years (F-test, P < 0.05).

DISCUSSION

We have distinguished four morphological stages of
development of ephyrae and metaephyrae, along with
their respective metrics of CDD and TBD in live and
CDD in preserved individuals. Despite interannual varia-
tions in size-at-stage, size becomes consistently larger and
more variable toward advanced stages of development.
The increasing variability of size at stage (TableI) is
unsurprising as it is influenced by feeding condition—
ephyrae and metaephyrae can reduce somatic growth
and shrink under poor feeding conditions (Miranda
et al., 2016; Kamiyama, 2018; Ramondenc et al., 2019).
Thus, we emphasize that morphological classification is
a biologically meaningful approach to determine early
development stages (Ishii e/ al., 2004), particularly in
ecological studies where the development of feeding
structures matters. Furthermore, this approach enables
a faster stage determination of large plankton collections
and the inclusion of partially damaged individuals.
Subsequent ephyrae and metaephyrae stages develop
structures that enable them to capture and digest different
prey items. Research conducted on newly developed
ephyrae of other scyphozoan shows that they feed
primarily on particulate organic matter and microzoo-
plankton (Bamstedt et al, 2001; Miranda et al., 2016;
Kamiyama, 2018), and it is likely that stage I P noctiluca
do so too. Stage II ephyrae, with improved swimming
capacity, more gastric filaments and the appearance of
nematocysts, can already feed on small mesozooplankton,
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Table I: Morphometric measurements of P noctiluca early lfe stages alive and preserved in 4%

Jormaldehyde solution
Stage Condition n CDD (mm) n TBD (mm) CDD/TBD
Min Max Mean SD Min Max Mean SD
| Live 20 0.53 1.24 0.82 0.20 " 1.29 3.05 1.71 0.51 0.48
1l Live 21 0.88 1.62 1.17 0.19 1 1.68 3.93 2.36 0.68 0.50
11l Live 34 1.23 3.52 2.00 0.60 13 2.20 4.46 3.15 0.81 0.64
v Live 33 2.78 5.85 4.16 0.81 1" 3.29 6.92 4.88 1.16 0.85
| Preserved 172 0.43 1.00 0.77 0.13
1l Preserved 768 0.76 1.87 113 0.13
1l Preserved 1500 1.01 2.98 1.69 0.28
\Y Preserved 136 1.98 4.43 2.87 0.54
SD, standard deviation.
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Fig. 3. Shrinkage and size-differentiation of P noctiluca ephyrae and metaephyrae. (a) Shrinkage of the CDD of ephyrae and metaephyrae
of P noctiluca after 6-month preservation in 4% formaldehyde solution. Gray line: 1:1 ratio; black line: linear regression where preserved
CDD =0.05+0.72 x live CDD, P < 0.05 and R? =0.92. (b) Boxplots of CDD measurements of 2576 ephyrae and metaephyrae of P noctiluca
preserved in 4% formaldehyde solution. Line in the box: median; border of left and right boxes: first (Q 1) and third (Q3), respectively; left and right

whiskers: minimum (Q1-1.5 x interquartile range) and maximum (Q3 + 1.5 X interquartile range), respectively; dots: outliers.

but it is likely they have a low feeding success compared
with subsequent stages as they still use the lappets to
capture prey (Sullivan e/ al., 1997). The development of
tentacles in stage III is a major advance enabling them
to improve capture efficiency of larger prey (Lilley et al.,
2014), including small fish larvae (personal observation).
Reaching this stage is considered a key step to improve
carly survival of jellyfish (Ishii et al, 2004). Stage IV
metacphyrae have twice as many tentacles as stage
III metaephyrae, a well-developed gastric chamber
with numerous filaments and abundant nematocysts.
Although we have not tested capture efficiencies directly,
other studies show that they are effective predators of

mesozooplankton and ichthyoplankton (Purcell et al.,
2014; Lilley et al., 2014; Tilves et al., 2016; Sabatés et al.,
2010).

Size shrinkage of gelatinous plankton varies between
7% and 77% upon taxon, size of the specimen and
formaldehyde concentration (e.g. Lafontaine ez al., 1989;
Nishikawa et al., 1996; Thibault-Botha et al., 2004). Even
within a same taxonomic group, shrinkage may differ
upon structural features. For imnstance, Nishikawa and
Terazaki (1996) found that the size of two thaliaceans
shrinks 7% and 24% at the same formaldehyde concen-
tration, likely reflecting differences in the thickness of
their test wall. Ephyrae and metaephyrae of P noctiluca
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shrink almost 25% after preservation in 4% formaldehyde
solution, and we found no relation between shrinkage and
size of the live specimen. Moller (1980) estimated that
ephyrae and metaephyrae (1.3-8.0 mm CDD) of Aurelia
aurita preserved in 4% formaldehyde solution shrink 15%,
whereas larger medusae can shrink up to 30%. This trend
contrasts with shrinkage of other gelatinous taxa like
ctenophores, where larger individuals of the ctenophore
Pleurobrachia bache: shrink less than smaller individuals
(Thibault-Botha et al., 2004).

It 1s possible that the range of sizes evaluated in this
study (0.53-5.85-mm CDD) is too narrow to appreciate
significant size differences in shrinkage. Having mea-
sures of shrinkage are necessary to identify the original
size of specimens collected in plankton surveys. This is
important because, while most field collections preserve
plankton samples with formaldehyde or other fixatives,
experiments on early survival and trophic ecology use
live measurements. Thus, with the caveat that our metric
applies to only samples stored in 4% formaldehyde, con-
verting sizes of preserved samples to their live equivalents
can help improve the accuracy of ecological models of P
noctiluca early life stages on field observations.

CONCLUSIONS

Ephyrae and metaephyrae of P noctiluca are two early
life stages that are often vaguely described and fail to
summarize important body transformations during this
period that affect prey capture and feeding processes.
Here, we have covered this information gap describing
four stages of development based on morphological and
morphometrical traits that influence their feeding capac-
ity. We further report that ephyrae and metacphyrae
shrink 24.6% in size after preservation in 4% formalde-
hyde solution. These findings set a baseline defining finer
stages of ephyrae and metaephyrae that can contribute to
further ecological studies of P noctiluca.

SUPPLEMENTARY DATA

Supplementary data is available at Journal of Plankton Research online.
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